Thursday, 9 November 2017

Viktat glidande medelvärde trend


Viktiga rörliga medelvärden: Grunderna Under åren har tekniker hittat två problem med det enkla glidande medlet. Det första problemet ligger i tidsramen för glidande medelvärdet (MA). De flesta tekniska analytiker tror att prisåtgärder. det öppnande eller stängande aktiekurset räcker inte för att bero på att man korrekt förutsäger köp - eller försäljningssignaler för MAs-crossover-åtgärden. För att lösa detta problem, tilldelar analytiker nu mer vikt till de senaste prisuppgifterna med hjälp av det exponentiellt jämnaste glidande genomsnittet (EMA). (Läs mer om att utforska exponentiellt vägda rörliga medelvärdet.) Ett exempel Till exempel, med en 10-dagars MA, skulle en analytiker ta slutkursen på den 10: e dagen och multiplicera detta nummer med 10, den nionde dagen med nio, den åttonde dag med åtta och så vidare till den första av MA. Så snart summan har bestämts, fördelar analytikern sedan numret genom tillsatsen av multiplikatorerna. Om du lägger till multiplikatorerna i 10-dagars MA-exemplet är numret 55. Denna indikator kallas det linjärt vägda glidande medlet. (För relaterad läsning, kolla in Enkla rörliga genomsnittsvärden. Utveckla tendenser.) Många tekniker är fasta troende i det exponentiellt jämnaste glidande genomsnittet (EMA). Denna indikator har förklarats på så många sätt att det både förvirrar studenter och investerare. Kanske kommer den bästa förklaringen från John J. Murphys tekniska analys av finansmarknaderna (publicerad av New York Institute of Finance, 1999). Det exponentiellt jämnaste glidande genomsnittet adresserar båda problemen i samband med det enkla glidande medlet. För det första tilldelas det exponentiellt glatt genomsnittet en större vikt till de senaste data. Därför är det ett viktat glidande medelvärde. Men medan det tilldelas mindre betydelse för tidigare prisuppgifter, ingår det i beräkningen av alla data i instrumentets livstid. Dessutom kan användaren justera viktningen för att ge större eller mindre vikt till det senaste dagspriset, vilket läggs till i procent av värdet för tidigare dagar. Summan av båda procentvärdena lägger till 100. Till exempel kan det sista dagspriset tilldelas en vikt av 10 (.10), som läggs till föregående dagsvikt på 90 (.90). Detta ger den sista dagen 10 av den totala vikten. Detta skulle motsvara ett 20-dagars medelvärde genom att ge sista dagens pris ett mindre värde av 5 (.05). Figur 1: Exponentially Sloothed Moving Average Ovanstående diagram visar Nasdaq Composite Index från den första veckan i augusti 2000 till 1 juni 2001. Som du tydligt kan se, EMA, som i detta fall använder slutkursdata över en nio dagars period, har bestämda försäljningssignaler den 8 september (markerad med en svart nedåtpil). Det här var den dag då indexet gick ner under 4 000-nivån. Den andra svarta pilen visar ett annat nedben som teknikerna faktiskt förväntade sig. Nasdaq kunde inte generera tillräckligt med volym och intresse från detaljhandeln för att bryta 3 000 mark. Därefter dyker ner igen till botten ut vid 1619.58 den 4 april. Upptrenden av 12 april markeras med en pil. Här stängde indexet 1961.46, och tekniker började se att institutionella fondförvaltare började hämta några fynd som Cisco, Microsoft och några av de energirelaterade frågorna. (Läs våra relaterade artiklar: Flytta genomsnittliga kuvert: Raffinera ett populärt handelsverktyg och flytta genomsnittlig studs.) Ett mått på förhållandet mellan en förändring i den mängd som krävdes av ett visst gods och en förändring i priset. Pris. Det totala dollarns marknadsvärde för alla bolagets utestående aktier. Marknadsvärdet beräknas genom att multiplicera. Frexit kort för quotFrench exitquot är en fransk spinoff av termen Brexit, som uppstod när Storbritannien röstade till. En order placerad med en mäklare som kombinerar funktionerna i stopporder med de i en gränsvärde. En stopporderorder kommer att. En finansieringsrunda där investerare köper aktier från ett företag till en lägre värdering än värderingen placerad på. En ekonomisk teori om totala utgifter i ekonomin och dess effekter på produktion och inflation. Keynesian ekonomi utvecklades. What039s skillnaden mellan glidande medelvärde och viktat glidande medelvärde. Ett 5-års glidande medelvärde baserat på ovanstående priser skulle beräknas med följande formel: Baserat på ekvationen ovan var genomsnittspriset över perioden ovan var 90,66. Att använda glidande medelvärden är en effektiv metod för att eliminera starka prisfluktuationer. Huvudbegränsningen är att datapunkter från äldre data inte vägs något annorlunda än datapunkter nära början av datasatsen. Det här är där viktade glidande medelvärden kommer till spel. Viktiga medelvärden tilldelar tyngre viktning till mer aktuella datapunkter eftersom de är mer relevanta än datapunkter i det avlägsna förflutna. Summan av viktningen ska lägga till upp till 1 (eller 100). För det enkla glidande medlet fördelas viktningarna jämnt, varför de inte visas i tabellen ovan. Slutkurs för AAPLMoving Average Den rörliga genomsnittliga tekniska indikatorn visar genomsnittligt instrumentprisvärde under en viss tidsperiod. När man beräknar glidande medelvärde, räknar man med instrumentpriset för denna tidsperiod. När priset ändras ökar eller förminskar dess rörliga genomsnitt. Det finns fyra olika typer av glidande medelvärden: Enkel (även kallad aritmetisk), Exponentiell. Smoothed och Weighted. Flyttande medelvärde kan beräknas för varje sekventiell dataset, inklusive öppnings - och slutkurser, högsta och lägsta priser, handelsvolym eller andra indikatorer. Det är ofta fallet när dubbla rörliga medelvärden används. Det enda där glidande medelvärden av olika typer skiljer sig avsevärt från varandra är när viktkoefficienter, som tilldelas de senaste uppgifterna, skiljer sig åt. Om vi ​​pratar om Simple Moving Average. Samtliga priser för den aktuella tidsperioden är lika med värdet. Exponentiell rörlig medelvärde och linjärt vägt rörande medelvärde bifogar mer värde till de senaste priserna. Det vanligaste sättet att tolka prisglidande genomsnittet är att jämföra sin dynamik med prisåtgärden. När instrumentpriset stiger över sitt glidande medelvärde visas en köpsignal, om priset sjunker under sitt glidande medelvärde, har vi en säljsignal. Detta handelssystem, som är baserat på det rörliga genomsnittet, är inte utformat för att ge inträde till marknaden rätt i sin lägsta punkt och dess utgång höger på toppen. Det gör det möjligt att agera enligt följande trend: att köpa snart efter att priserna når botten och att sälja snart efter att priserna har nått sin topp. Flyttande medelvärden kan också tillämpas på indikatorer. Det är här tolkningen av indikatorens glidande medelvärden liknar tolkningen av prisförskjutande medelvärden: om indikatorn stiger över dess glidande medelvärde betyder det att den stigande indikatorrörelsen sannolikt kommer att fortsätta: om indikatorn faller under dess glidande medelvärde innebär att det sannolikt fortsätter att gå nedåt. Här är typerna av glidande medelvärden på diagrammet: SMA (Medium Moving Average (SMA) Exponential Moving Average (EMA) Smoothed Moving Average (SMMA) Linjärt vägt rörligt medelvärde (LWMA) Du kan testa handelssignalerna för denna indikator genom att skapa en expertrådgivare i MQL5 Wizard. Beräkning Enkelt rörligt medelvärde (SMA) Enkelt, med andra ord beräknas aritmetiskt rörligt medelvärde genom att summera priserna på instrumentlåsning under ett visst antal enskilda perioder (t ex 12 timmar). Detta värde divideras därefter med antalet sådana perioder. SMA SUM (CLOSE (i), N) N SUM summa CLOSE (i) aktuell period nära pris N antal beräkningsperioder. Exponentiellt rörligt medelvärde (EMA) Exponentiellt glatt rörligt medelvärde beräknas genom att tillägga en viss andel av nuvarande slutkurs till föregående värde för glidande medelvärde. Med exponentiellt slätade glidande medelvärden är de senaste snabba priserna mer värdefulla. P-procent exponentiell glidande medelvärde kommer att se ut: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) CLOSE (i) nuvarande period nära pris EMA (i - 1) av en föregående period P procentsatsen av att använda prisvärdet. Smoothed Moving Average (SMMA) Det första värdet av detta slätade glidande medelvärde beräknas som det enkla glidande medelvärdet (SMA): SUM1 SUM (CLOSE (i), N) Det andra glidande medlet beräknas enligt följande formel: SMMA (i) (SMMA1 (N-1) CLOSE (i)) N Lyckande glidande medelvärden beräknas enligt följande formel: PREVSUM SMMA (i - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) CLOSE (i)) N SUM summan SUM1 Summa summan av slutkurserna för N perioder räknas den från föregående stapel PREVSUM glatt summa av föregående stapel SMMA (i-1) glatt glidande medelvärde för föregående stapel SMMA (i) glatt glidande medelvärde för nuvarande stapel (förutom den första) CLOSE (i) nuvarande slutpris N utjämningsperiod. Efter aritmetiska omvandlingar kan formeln förenklas: SMMA (i) (SMMA (i - 1) (N - 1) CLOSE (i)) N Linjärt Vägt Flytande Medelvärde (LWMA) Vid viktat glidande medelvärde är de senaste data av mer värde än mer tidiga data. Viktat glidande medelvärde beräknas genom att multiplicera var och en av slutkurserna inom den angivna serien med en viss viktkoefficient: LWMA SUM (CLOSE (i) I, N) SUM (I, N) SUM Summa CLOSE (i) Nuvarande nära pris SUM (I, N) Total summa av viktkoefficienter N utjämningsperiod.

No comments:

Post a Comment